Towards Efficient and Privacy-Preserving Network-Based Botnet Detection Using Netflow Data
نویسندگان
چکیده
Botnets pose a severe threat to the security of Internet-connected hosts and the availability of the Internet's infrastructure. In recent years, botnets have attracted many researchers. As a result, many achievements in studying different botnets' anatomies have been made and approaches to botnet detection have been developed. However, most of these approaches target at botnet detection using raw packet data. While this data provides the most complete view on botnet induced traffic, it usually cannot efficiently be collected at large network nodes transferring multi-Gigabits per second. Additionally, a deep inspection of network packets endangers the users' privacy. In order to solve these problems different detection methods based on Netflow data have been proposed. To contribute to advances in Netflow-based botnet detection research, we first give an overview of currently known approaches and compare their advantages and disadvantages. We then argue that Netflow-based detection requires the availability of a reference data set based on real data and present a modular data collection environment that is able, amongst others, to generate Netflow data at an ISP node. Finally, we present our vision of a future botnet detection framework based on Netflow data.
منابع مشابه
Peer-to-Peer Botnet Detection Using NetFlow Master Thesis
. Abstract . . Traditional botnets use a centralized communications architecture where all the bots connect to Command and Control (C&C) servers. These servers are the weak point of the botnet, as they are easy targets for take down and monitoring. Peer-to-peer (p2p) botnets have a distributed architecture, which make them more resilient. This research aims at the detection of individual p2p bo...
متن کاملBotTrack: Tracking Botnets Using NetFlow and PageRank
With large scale botnets emerging as one of the major current threats, the automatic detection of botnet traffic is of high importance for service providers and large campus network monitoring. Faced with high speed network connections, detecting botnets must be efficient and accurate. This paper proposes a novel approach for this task, where NetFlow related data is correlated and a host depend...
متن کاملDesign and Implementation of a Distributed Platform for Sharing IP Flow Records
Experiments using real traffic traces are of key importance in many network management research fields, such as traffic characterization, intrusion detection, and accounting. Access to such traces is often restricted due to privacy issues; research institutions typically have to sign non-disclosure agreements before accessing such traces from a network operator. Having such restrictions, resear...
متن کاملBotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملBotRevealer: Behavioral Detection of Botnets based on Botnet Life-cycle
Nowadays, botnets are considered as essential tools for planning serious cyberattacks. Botnets are used to perform various malicious activities such as DDoSattacks and sending spam emails. Different approaches are presented to detectbotnets; however most of them may be ineffective when there are only a fewinfected hosts in monitored network, as they rely on similarity in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012